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1. Introduction

The AdS/CFT correspondence is a powerful way to study the quantum gravity with a neg-

ative cosmological constant. In particular, the AdS3/CFT2 correspondence is interesting

from the viewpoint of quantum gravity since three dimensional gravity has no propagating

degrees of freedom at the classical level, hence the bulk theory might be simpler than the

higher dimensional cousins. Recently, Witten proposed a boundary CFT which is dual to

the pure gravity on AdS3 [1] (see also [2 – 8]). It is found that the partition function of

boundary CFT has a nice interpretation as the sum over geometries in the bulk. However,

there are some left-right asymmetric contributions in the partition functions which are

difficult to interpret semi-classically. Moreover, the very existence of the pure gravity on

AdS3 as a quantum theory has not been established yet. Therefore, it is desirable to study

AdS3 gravity in the string theory setup. The obvious problem is that the dual CFT is not

known in general. Even if the dual CFT is known, the partition function is usually hard

to compute.

There are a few cases that we can study the AdS3/CFT2 correspondence quantitatively.

In [9], Type IIB theory on AdS3 × S3 × K3 is studied by rewriting the partition function

of BPS states (elliptic genus) as a sum over geometries, which is known as the Fareytail

expansion. The difficulty appeared in the pure gravity on AdS3 is avoided since the elliptic

genus depends only on the left movers.

In this paper, we study the partition function of N = 4 SU(N) super Yang-Mills theory

on K3. Via the string dualties, this is equal to the partition function of BPS states of N

fundamental heterotic strings. Using the technique in [9, 10], we show that this partition

function has an expansion as a sum over asymptotically AdS3 geometries and argue that

they are dual to a large number of heterotic strings. In section 2, we review the partition

function of N = 4 SYM on K3 and its relation to the heterotic string. In section 3, we

write down the Fareytail expansion of the partition function of N = 4 SYM on K3. In

section 4, we discuss some questions.
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2. N = 4 SYM on K3 and heterotic strings: review

We first review the Vafa-Witten theory of topological N = 4 SYM [11] and its relation to

the BPS index of heterotic strings.

2.1 N = 4 SYM on K3

In [11], it is shown that the topologically twisted SU(N) N = 4 SYM on K3 computes the

generating function of the Euler number of moduli space of k instantons

ZN (τ) =

∞
∑

k=0

qk−Nχ
(

MN,k(K3)
)

(2.1)

with q = e2πiτ . The N = 4 SU(N) SYM with k instantons is realized by the following

brane configuration in Type IIA theory:

N D4 on K3 × Rt ⊕ k D0 , (2.2)

where Rt denotes the time direction. In this brane picture, the shift k → k−N of instanton

number in (2.1) is understood as the contribution of D0-brane charge from the curvature

of K3.

The partition function (2.1) is evaluated as follows. Let us first consider the case

of U(1) gauge theory. This is easily obtained by noting that the moduli space of U(1)

instantons is equal to the Hilbert scheme of points on K3

M1,k(K3) = Hilbk(K3) . (2.3)

It is well-known that the cohomology of this space is given by the Fock space of oscillators

αA
−n (A = 1 · · · 24) at level L0 = k. Note that αA

−1 corresponds to the generator of H0(K3)⊕
H2(K3) ⊕ H4(K3) and the higher modes αA

−n (n > 1) correspond to the twisted sector of

orbifold (K3)k/Sk. From this representation, one finds that the partition function of U(1)

theory is given by the partition function of 24 free bosons

G(τ) =
1

η(τ)24
. (2.4)

In the case of SU(N) theory, the partition function is given by an almost Hecke trans-

form of the U(1) partition function G(τ) [12, 13]

ZN (τ) =
1

N2

∑

ad=N,b∈Zd

dG

(

aτ + b

d

)

. (2.5)

When N = p is prime, this expression simplifies to

Zp(τ) =
1

p2
G(pτ) +

1

p

p−1
∑

b=0

G

(

τ + b

p

)

. (2.6)

As discussed in [11, 12], the structure of summation in (2.5) can be physically under-

stood by adding mass term to the adjoint scalar fields and breaking the theory to a factors
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of N = 1 SU(d) pure Yang-Mills. The summation over b ∈ Zd comes from the d vacua of

N = 1 SU(d) theory.

Note that ZN (τ) itself is not a modular form, although G(τ) is a weight −12 modular

form. This is related to the fact that the Montonen-Olive S-duality maps the SU(N) theory

to a theory with different gauge group SU(N)/ZN . Therefore, ZN does not come back to

itself under the action of S-duality.

However, we can regard ZN as a member of more general class of partition functions

Z
(v)
N with ’t Hooft flux v ∈ H2(K3, ZN ) turned on,1 and identify ZN = Z

(v=0)
N . The

partition function with ’t Hooft flux v is given by [14]

Z
(v)
N (τ) =

1

N2

∑

ad=N,b∈Zd

dG

(

aτ + b

d

)

δdv,0e
−πi bv·v

aN , (2.7)

where v · v′ =
∫

K3 v ∧ v′ is the intersection number. One can show that Z
(v)
N transform as

a vector-valued modular form of weight −12 [14]

Z
(v)
N (γ(τ)) = (cτ + d)−12

∑

v′∈H2(K3,ZN )

Mvv′(γ)Z
(v′)
N (τ) . (2.8)

Throughout this paper we use the usual notation for γ ∈ SL(2, Z) and its action on τ

γ =

(

a b

c d

)

,

γ(τ) =
aτ + b

cτ + d
. (2.9)

The modular matrix M(γ) for S = ( 0 1 − 1 0 ) and T = ( 1 10 1 ) is given by

Mvv′(S) =
1

N11
e

2πi
N

v·v′ ,

Mvv′(T ) = δv,v′e
πi
N

v·v . (2.10)

It is instructive to explicitly write down the first few terms of q-expansion of partition

functions (2.4), (2.5)

G = q−1 + 24 + 324q + 3200q2 + 25650q3 + · · · ,
Z2 =

1

4
q−2 + 30 + 3200q + 176337q2 + 5930496q3 + · · · ,

Z3 =
1

9
q−3 +

80

3
+ 25650q + 5930496q2 + 639249408q3 + · · · ,

Z4 =
1

16
q−4 +

63

2
+ 176256q + 143184800q2 + 42189811200q3 + · · · . (2.11)

1One can introduce the theta series for the lattice Γ3,19 by summing over the ’t Hooft fluxes. This

corresponds to considering U(N) gauge theory instead of SU(N) gauge theory [11].
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One immediately notices that ZN has a ‘gap’ between q−N and q0, i.e., the coefficient

of qn vanishes in the range −N + 1 ≤ n ≤ −1. This is true for general N :2

ZN =
1

N2
q−N + 24

∑

a|N

1

a2
+ O(q) . (2.12)

The existence of ‘gap’ is understood by counting the dimension of moduli space

dimMN,k(K3) = 4N(k − N) + 4 , (2.13)

which becomes negative when k < N . This implies that there is no contribution to ZN

from the instantons with the instanton number k < N .

2.2 Relation to heterotic strings

By the duality chain, we can dualize the D4-D0 configuration in (2.2) to a configuration in

heterotic string theory. To see this, we first lift the IIA configuration (2.2) to the M-theory

configuration:

N M5 on K3 × Rt × S1
M ⊕ k units of momentum along S1

M . (2.14)

Here S1
M denotes the M-theory circle in the eleventh direction. In order to relate this

configuration to the topological N = 4 SYM, we perform a Wick rotation of the time

direction Rt and compactify it to a thermal circle S1
β. Then the worldvolume of M5-brane

becomes K3 × T 2 where T 2 = S1
β × S1

M. More generally, we replace the two-dimensional

part of M5-brane worldvolume by a torus Στ with an arbitrary modular parameter τ

Rt × S1
M −→ Euclidean torus Στ . (2.15)

Using the relation between M5-brane compactified on a torus and N = 4 SYM, the

moduli τ of torus Στ is identified as the coupling constant of N = 4 SYM

τ =
θ

2π
+ i

4π

g2
YM

. (2.16)

Finally, the relation between N = 4 SYM on K3 and the heterotic string follows from

the identification of M5-brane wrapping around K3 and the fundamental heterotic string.

Therefore, the M5-brane configuration (2.14) is dual to

N heterotic strings on Στ ⊕ k units of momentum along S1 ⊂ Στ . (2.17)

In this heterotic string picture, the partition function ZN is given by the index of

BPS states (Dabholkar-Harvey states) in the N = (0, 8) superconformal field theory of N

fundamental heterotic strings. This is computed by setting the right-moving SUSY part

to the ground state and summing over the left-moving bosonic side. For the single string

case, this summation gives η(τ)−24, as expected from the result of U(1) N = 4 SYM (2.4).

For N > 1, the Hecke structure of SU(N) SYM partition function (2.5) is interpreted in

the heterotic picture as the effect of multiple winding of genus one worldsheet around the

target space torus Στ [12, 16].

2Curiously, the q0 term of ZN is 24 times the integral of matrix model obtained by the dimensional

reduction of D = 10 super Yang-Mills to zero dimension [15].
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3. Fareytail expansion of N = 4 SYM on K3

As discussed in [17, 18], a large number of coincident fundamental heterotic strings has a

near horizon geometry of the form AdS3 × M , hence it is expected to have a holographic

dual two-dimensional CFT. In the previous section, we saw that the partition function ZN

of N = 4 SYM on K3 captures the BPS spectrum of N fundamental heterotic strings.

Therefore, it seems natural to identify ZN as the BPS index of string theory on the AdS3

dual of heterotic strings. Since we have Wick-rotated the time direction, the dual AdS3

should be understood as the Euclidean AdS3 and the torus Στ is interpreted as the bound-

ary of AdS3. The modular parameter τ should be fixed as a boundary condition for the

bulk metric.

The Euclidean AdS3 is topologically a solid torus. There are many ways to fill inside

the torus Στ to make a solid torus. The bulk geometry is distinguished by the holomogy

cycle of Στ which becomes contractible. For instance, the spacial circle is contractible for

the thermal AdS3 and the temporal circle is contractible for the BTZ black hole.

To see the relation of the partition function ZN to the bulk AdS3 geometry3, it is useful

to rewrite ZN as a Poincaré series. A general procedure is developed in [9, 10] and dubbed

Fareytail expansion. The necessary ingredients are the modular matrix M(γ) in (2.8) and

the coefficient cv(n) of the polar part of Z
(v)
N =

∑

n cv(n)qn. Applying the general formula

in [10] to our case, the Fareytail expansion of ZN reads4

∑

Γ∞\Γ

≡ lim
K→∞

∑

(Γ∞\Γ)K

= lim
K→∞

∑

|c|≤K

∑

|d|≤K,(c,d)=1

. (3.1)

ZN (τ) = 12
∑

a|N

1

a2
+

1

2

∑

γ∈Γ∞\Γ

(cτ + d)12
∑

v∈H2(K3,ZN )

M−1(γ)0v

×
∑

n<0

cv(n) exp

(

2πin
aτ + b

cτ + d

)

R

(

2πi|n|
c(cτ + d)

)

, (3.2)

where Γ∞ =

{(

1 t

0 1

)

, t ∈ Z

}

is the parabolic subgroup of Γ = SL(2, Z), and R(x) is

defined by

R(x) =
1

(12)!

∫ x

0
dt t12e−t . (3.3)

In the large N limit, we expect that the expansion (3.2) can be interpreted as a sum

over semi-classical geometries. One can see that in the large N limit the summation over

’t Hooft flux is dominated by the v = 0 term, since the leading term of Z
(v 6=0)
N is qn with

n > −N , while Z
(v=0)
N starts with the term 1

N2 q−N . Therefore, in the the large N limit we

can approximate ZN as

ZN ∼ 1

2N2

∑

γ∈Γ∞\Γ

(cτ + d)12M−1(γ)00 exp

(

−2πiN
aτ + b

cτ + d

)

R

(

2πiN

c(cτ + d)

)

. (3.4)

3The relation between the partition function G(τ ) of U(1) theory and the black holes in N = 4 string

theories is studied in [19]. The gravity dual of a single heterotic string is studied in [20].
4The sum over the coset Γ∞\Γ should be defined as a limit [10]
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It seems natural to identify the exponential factor in (3.4) as the holomorphic part of

the classical action of the SL(2, Z) family of BTZ black holes [21]

S = −4πN Im

(

aτ + b

cτ + d

)

. (3.5)

Namely, the partition function ZN of N = 4 SYM on K3 admits a semi-classical

expansion of sum over geometries in the AdS3 background, which is holographically dual

to heterotic strings. As we move τ on the upper half plane, the dominant term in the

sum (3.4) changes. Since a large factor of N is multiplied in the classical action (3.5), this

change of dominant contribution becomes a sharp phase transition in the large N limit.

This is interpreted as the Hawking-Page transition [22] in the bulk gravity side. The phase

diagram5 is the same as that of the pure gravity on AdS3 (figure 3b in [7]).

4. Discussion

In this paper, we studied the Fareytail expansion of the partition function of N = 4 SYM

on K3 and interpreted it as a sum over geometries dual to fundamental heterotic strings.

It is observed in [23] that the contribution of BTZ black hole is reproduced by taking the

saddle point of instanton sum (2.1). To see this, recall that when the instanton number

becomes large the Euler number of instanton moduli space scales as

χ
(

MN,k(K3)
)

∼ e4π
√

N(k−N) (k − N ≫ 1) . (4.1)

This essentially follows from the Cardy formula applied to the c = 24N CFT. Then

the partition function (2.1) is approximated as

ZN ∼
∑

k

e4π
√

N(k−N)qk−N . (4.2)

The saddle point k = k0 of the above sum is given by

k0 − N = −N

τ2
, (4.3)

and the value of the corresponding term turns out to be

e4π
√

N(k0−N)qk0−N = e2πi N
τ . (4.4)

One can see that the exponent is nothing but the classical action of BTZ black hole.

Therefore, it seems that the BTZ black hole corresponds to a condensate of large number

of instantons. On the other hand, the zero-instanton term 1
N2 q−N corresponds to the

thermal AdS3. It would be interesting to understand what happens when adding k0 units

of momentum to the fundamental heterotic string and see what triggers the phase transition

in the heterotic string picture. It would also be interesting to study the zeros of ZN (τ)

and see if the Hawking-Page transition is associated with a condensation of Lee-Yang

zeros [7]. Finally, it would be interesting to identify the (cL, cR) = (24N, 12N) CFT of N

fundamental heterotic strings.

5The phase diagram of N = 4 SYM on K3 was studied in [23]. However, the motivation of [23] seems

to be different from ours.
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